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A polynomial hybrid reflection model and measurement of
its parameters based on images of sample
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Reflectance model is a basic concept in computer vision. Some existing models combining the classical
diffuse reflectance model and those for surfaces containing specular components can approximately describe
real reflectance. But the ratio of diffuse and specular reflection decided manually has no clear meaning.
We propose a new polynomial hybrid reflectance model. The reflectance map equation with a known shape
(for example cylinder) as a sample is used to estimate parameters of the proposed reflectance model by least
square regression algorithm. Then the reflectance parameters for surfaces of the same class of materials
can be determined. Experiments are performed for a metal surface. The synthesis images produced by the
proposed method and existing ones are compared with the real acquired image, and the results show that
the proposed reflectance model is suitable for describing real reflectance.

OCIS codes: 100.2960, 120.5820, 160.4760, 290.5820, 290.5880.

Reflectance model is an important concept in computer
vision[1]. Using the conception of reflectance model, the
procedure of imaging can be simulated. The bright-
ness of image pixel points is associated with proper-
ties of light source, attributes of camera, the orienta-
tion (shape) of object, and reflectance properties of the
surface[2]. Physical and geometrical optics are two ap-
proaches to the study of reflectance[3]. Geometrical
models process simpler mathematical forms than phys-
ical ones, which makes them more useful. In general,
geometrical models are applicable only when the wave-
length of incident light is much smaller compared with
the dimensions of the surface. A few papers investi-
gate the unified reflectance models from both physical
and geometrical optics[4−6]. At early time, Lambertian
model was adopted by computer vision due to its sim-
ple form[7]. Real materials surfaces show heavy specu-
lar component namely highlight, so specular reflectance
models are used[8]. But real surface contains both diffuse
and specular components. So lots of hybrid reflectance
models were proposed[5,9,10], most of which used a lin-
ear combination of diffuse and specular reflectance mod-
els and isotropic property. However, there is no general
reflectance model containing all reflectance properties.
On the other hand, the measurement of the reflectance
models is still a problem. Gonioreflectometer was used to
measure the parameters[5]. But the apparatus for mea-
suring the parameters of reflectance are relative expen-
sive. The measuring methodology based on images is usu-
ally chosen[11,12]. Recently, linear subspace was used to
investigate Lambertian reflectance and image formation
was considered as the analog of convolution[13]. How to
express reflectance function was investigated[14], a data-
driven reflectance model was also brought forward[15].

We think that the diffuse and specular reflectance
properties are distinguished but associated with each
other for an object. The image intensity based on diffuse
reflectance model is the inner multiplication of vectors
of the light source direction and surface normal. The
specular image intensity is exponential (or n-order poly-
nomial) of the inner multiplication of the specular direc-

tion and surface normal. Using principal direction deter-
mined by light direction and specular direction, a math-
ematical refined m-lobed reflection model was derived in
Ref. [9]. The value of weighting factor was gained empir-
ically for the linear combination hybrid model of diffuse
and specular models[2]. Based on the reflectance mor-
phology of rough surface[3,9], and inspired by the form
of diffuse and specular reflectance models, a new gen-
eral polynomial hybrid reflectance model is proposed in
this paper. The coefficients of the polynomial reflectance
model can be estimated using image with known shape by
least square regression algorithm. Then the reflectance
models for a class of surfaces of the same material can be
acquired. Additionally, the proposed method has the fol-
lowing characteristics. 1) Polynomial reflectance models
contain wide surface from diffuse to high specular ones
(the former is lower-order item and the latter is higher-
order item). 2) The reflectance map does not need to
be normalized because the irradiance is merged in the
coefficients of reflectance model.

Intensities of image are determined by several param-
eters: location and properties of light, surface properties
and orientation �n of objective in scene, location of cam-
era, and laws of image formation. In shape-from-shading
case, we generally assume that the light is a point light
source located in infinite position[16,17], its direction is �ni

in image center coordinates, and the light strength is E.
Observing camera is located in �no = (0, 0,−1). The ra-
diance of a distant light source can be described by Dirac
function as

Li(�n) = Eδ(�n − �no). (1)

The reflected light depends on the radiance of the light
and the bidirectional reflection function (BRDF) defined
as

f(θi, φi, θo, φo) =
∂Lo(θo, φo)
∂Li(θi, φi)

, (2)

where (θi, φi) and (θo, φo) denote directions of irradiance
of incident light Li and reflected radiance Lo in polar
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coordinates respectively. With a known BRDF of a sur-
face and a distant point light (assumed in this paper)
Eδ(n−�no), the radiance of reflected light in the viewing
direction �n is

L(�n, �ni, �no) =
∫
ω

f(�n, �ni, �no)Li(ω)dω

= f(�n, �ni, �no)E max{0, �nT
i ∗ �n}, (3)

where the integral domain of ω is hemisphere. The result
shows that the intensity I acquired by camera is propor-
tional to L(�n, �ni, �no), thus we have

I(�n, �ni, �no) = αL(�n, �ni, �no), (4)

where α is the proportion constant. Normalized image
is used in practice. Let Imax and Imin be the acquired
maximum and minimal intensities of image, we get the
well-known reflectance map equation,

R(�n, �ni, �no) =
I(�n, �ni, �no) − Imin

Imax − Imin
. (5)

From Eq. (3), we find that a right reflectance model
can accurately describe the image intensity variation cor-
responding to the reflection characteristics of the sur-
face. The reflection characteristics of the surface are
described by BRDF. Lots of experiential and mathe-
matical reflectance models are formulated from optical
radiation[3,6]. Two kinds of extreme reflection models
namely diffuse reflection and specular reflection are usu-
ally considered in computer vision. The BRDF of Lam-
bertian (diffuse) reflectance model is a constant shown
as fd(�n, �ni, �no) = 1/π. In this case, the reflectance map
function of the surface illuminated by a point light source
is given by

Rd(�n, �ni, �no) =
E

π
�nT ∗ �ni. (6)

On the other hand, many mathematical reflectance
models are used to approximate the characteristic of
specular reflection. The ideal specular reflection model
is formulated using Dirac function as

fs(�n, �ni, �no) =
δ(�nT ∗ �nspec)

2�nT ∗ �ni
, (7)

where the vector �nspec = (�ni + �no)/ |�ni + �no| is called
the halfway-vector (or specular reflectance direction) and
represents the normalized vector sum between the light
source direction and the observing camera direction.
Apparently, model (7) cannot be used in practice. A
modified Torrance-Sparrow model using a Gaussian dis-
tribution to model the facet orientation function is used
to deal with specular reflectance phenomena[8]:

fs(�n, �ni, �no) =
1

(�nT ∗ �ni)(�nT ∗ �no)

× exp(− (tan arccos(�nT ∗ �nspec))2

2σ2
), (8)

where the factor σ is the standard deviation, which can
be considered as measurement of the surface roughness.

In this case, the reflectance map function of the surface
is[8]

Rs(n, �ni, �no)

=
E

(�nT ∗ �no)
exp(− (tan arccos(�nT ∗ �nspec))2

2σ2
). (9)

Another specular model is Phong’s model[18] which in-
dicates that the light perceived by the camera is repre-
sented as

Rs(�n, �ni, �no) = E(�nT ∗ �nspec)k, (10)

where k is a constant. Different values of k denote
different kinds of surfaces which are more or less mirror-
like.

But the surfaces of most real objects are neither purely
Lambertian reflectance models, nor purely specular com-
ponents. Instead, they are a combination of diffuse and
specular components. A hybrid model that consists of
three components (a diffuse lobe, a specular lobe, and
a specular spike) was proposed by Tagare[9]. Based on
a set of principal direction �pj, a general non-Lambertian
model is shown as

Rhybrid =
∑

j

ρjΦ(�pT
j ∗ �n) + b, (11)

where ρj is albedo, Φ is a monotonically increasing func-
tion, and b is a constant. Because �pj is derived by the
directions of light source vector and observing camera
vector, the model (11) can be considered as a function of
these vectors. A linear combination model of diffuse and
specular components presented by Cho[2] is described as

Rhybrid = (1 − w)Rd + wRs, (12)

where Rhybrid is the total intensity of the surface, Rd and
Rs are the diffuse intensity and the specular intensity, re-
spectively, and w is the weight of the specular component
determined empirically.

Inspired by the reflectance models (9) − (11), a new
multi-order specular reflectance model based on polyno-
mial of inner multiplications of halfway-vector and sur-
face normals is proposed as

Rs = E

∞∑
k=1

ck(�nT ∗ �nspec)k, (13)

where k denotes the kth order mirror-like component,
and a series of constants ck are the proportion of the kth
order mirror-like component in the total Rs. Each term
of (13) denotes different degree of specular reflectance
component, which is more or less mirror-like. We think
that the reflectance map Rs is composed by all different
degrees of specular reflectance components. When used
in practice, the finite terms of polynomial (13) can be
shown as

Rs = E
N∑

k=1

ck(�nT ∗ �nspec)k, (14)

where N is associated with the most mirror-like compo-
nent of Rs. The characteristic of most practical object is
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hybrid, as described by the model (11) or the modified
form (12). So a new polynomial hybrid reflectance model
containing diffuse reflectance is brought forward as

Rhybrid = E[c0�n
T ∗ �ni +

∞∑
k=1

ck(�nT ∗ �nspec)k], (15)

where c0 can be considered as the proportion of diffuse
component in the total Rhybrid. When the light strength
E is merged with c1, c2, · · · , ck, Eq. (15) can be written
as

Rhybrid = d0�n
T ∗ �ni +

∞∑
k=1

dk(�nT ∗ �nspec)k. (16)

When used in practice, the finite terms of polynomial
(16) can be shown as

Rhybrid = d0�n
T ∗ �ni +

N∑
k=1

dk(�nT ∗ �nspec)k. (17)

Once the reflectance model (17) is established, we will
use a sample objective with known shape (denoted by its
surface function, we select cylinder in our experiments)
to determine the coefficients of (17) using the reflectance
map function (5) by least square regression algorithm.
Then the reflectance properties of the same class of ma-
terials can be obtained.

The reflectance model (17) is a function of �n, �ni and �no.
The coefficients denote the reflectance properties. When
the variables �n, �ni and �no are known, the coefficients of
Rhybrid(�n, �ni, �no) can be acquired using least square re-
gression algorithm. Assuming �n1, �n2, · · · , �nM are M
known directions of surface, from Eqs. (17) and (5), we
get

⎡
⎢⎢⎢⎣

I1

I2

...
IM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(�nT
1 ∗ �ni) (�nT

1 ∗ �nspec)1 · · · (�nT
1 ∗ �nspec)N

(�nT
2 ∗ �ni) (�nT

2 ∗ �nspec)1 · · · (�nT
2 ∗ �nspec)N

...
... · · · ...

(�nT
M ∗ �ni) (�nT

M ∗ �nspec)1 · · · (�nT
M ∗ �nspec)N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

d0

d1

...
dN

⎤
⎥⎥⎥⎦ .

We write the above equation in matrix form as

I = AD. (18)

In experiments, the number of image pixels M is larger
than the highest order N of specular components. So
Eq. (18) is an over-determined equation. The coefficients
vector D is

D = (ATA)−1ATI. (19)

We also investigate a way to evaluate the performance
of the proposed reflectance model and compare the im-
age generated from reflectance maps (6), (10) and (17).
Let R(k) denote the generated image, I(k) be the original
image. The difference between them are the comparison
criteria namely mean error (ME) and root square mean
error (RS), which are defined as

ME =
1
M

M∑
k=1

|R(k) − I(k)|, (20)

RS =

√√√√ 1
M

M∑
k=1

(R(k) − I(k))2. (21)

Experiments are performed to evaluate the perfor-
mance of the proposed model. Comparison results be-
tween the proposed model and existing ones are also
shown. Figure 1 is a real acquired image of a metal cylin-
der. The light is located in 3-m distance. The diameter of
the cylinder is 10 cm. We use camera center coordinates.
In our experiments, parameters of the proposed model
are acquired by the captured image of Fig. 1 and N is set
as 20. Calculated {d0, d1, · · ·, d20} using (19) are {0.0895,
0.0239, 0.0362, 0.0441, 0.0485, 0.0426, 0.0375, 0.0316,
0.0253, 0.0189, 0.0153, 0.0200, 0.0298, 0.0348, 0.0400,

0.0453, 0.0562, 0.0674, 0.0788, 0.0847, 0.0905}. The gen-
erated images using proposed reflectance model, Phong
model and Lambertian model are shown in Figs.2(a)—
(c). Figure 3 shows the gray intensities of Figs. 2(a)—
(c) along the surface directions (using cosine of their
angles with axis of camera). Figure 4 shows the in-
tensity errors of Figs. 2(a)—(c) compared with the in-
tensity of the original surface of Fig. 1. Table 1 lists

Fig. 1. Acquired image of a metal cylinder.

Fig. 2. Generated images using (a) the proposed model, (b)
Phong model, and (c) Lambertian model.
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Fig. 3. Intensities of Figs. 2(a)—(c) along the surface direc-
tions.

Fig. 4. Error of intensities compared with the original inten-
sity of Fig. 1.

Table 1. Reflectance Maps of Three Models

Proposed Phong Lambertian

ME 0.00439 0.15347 0.51338

RS 0.00153 0.01865 0.06172

the results using Eqs. (20) and (21). From the result, we
can see that the proposed reflectance model is more accu-
rate and flexible. It is suitable to describe the reflectance
properties of real surface.

In conclusion, a new general polynomial hybrid
reflectance model is proposed. We use the reflectance
map equation with known shape to estimate the param-
eters of the proposed reflectance model by least square
regression algorithm. Thus the reflectance properties
of the same class of material can be determined. Ex-
periments on real images show the proposed reflectance

model is suitable for describing the real reflectance prop-
erty. The proposed reflectance model may be used to
deal with computer vision problems such as shape-from-
shading with specular reflectance and improve the accu-
racy of three-dimensional (3D) reconstruction.
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